A general method for parameter estimation in light-response models
نویسندگان
چکیده
Selecting appropriate initial values is critical for parameter estimation in nonlinear photosynthetic light response models. Failed convergence often occurs due to wrongly selected initial values when using currently available methods, especially the kind of local optimization. There are no reliable methods that can resolve the conundrum of selecting appropriate initial values. After comparing the performance of the Levenberg-Marquardt algorithm and other three algorithms for global optimization, we develop a general method for parameter estimation in four photosynthetic light response models, based on the use of Differential Evolution (DE). The new method was shown to successfully provide good fits (R(2) > 0.98) and robust parameter estimates for 42 datasets collected for 21 plant species under the same initial values. It suggests that the DE algorithm can efficiently resolve the issue of hyper initial-value sensitivity when using local optimization methods. Therefore, the DE method can be applied to fit the light-response curves of various species without considering the initial values.
منابع مشابه
Photosynthetic parameter estimations by considering interactive effects of light, temperature and CO2 concentration
Biochemical leaf photosynthesis models are evaluated by laboratory results andhave been widely used at field scale for quantification of plant production,biochemical cycles and land surface processes. It is a key issue to search forappropriate model structure and parameterization, which determine modeluncertainty. A leaf photosynthesis model that couples the Farquhar-vonCaemmerer-Berry (FvCB) f...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملHeuristic Process Model Simplification in Frequency Response Domain
Frequency response diagrams of a system include detailed and recognizable information about the structural and parameter effects of the transfer function model of the system. The information are qualitatively and quantitatively obtainable from simultaneous consideration of amplitude ratio and phase information. In this paper, some rules and relationships are presented for making use of frequenc...
متن کاملEvaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling
One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...
متن کامل